AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells.

نویسندگان

  • Chi-Wai Lee
  • Leo Lap-Yan Wong
  • Edith Yuk-Ting Tse
  • Heong-Fai Liu
  • Veronica Yee-Law Leong
  • Joyce Man-Fong Lee
  • D Grahame Hardie
  • Irene Oi-Lin Ng
  • Yick-Pang Ching
چکیده

AMP-activated protein kinase (AMPK), a biologic sensor for cellular energy status, has been shown to act upstream and downstream of known tumor suppressors. However, whether AMPK itself plays a tumor suppressor role in cancer remains unclear. Here, we found that the α2 catalytic subunit isoform of AMPK is significantly downregulated in hepatocellular carcinoma (HCC). Clinicopathologic analysis revealed that underexpression of AMPK-α2 was statistically associated with an undifferentiated cellular phenotype and poor patient prognosis. Loss of AMPK-α2 in HCC cells rendered them more tumorigenic than control cells both in vitro and in vivo. Mechanistically, ectopic expression of AMPK enhanced the acetylation and stability of p53 in HCC cells. The p53 deacetylase, SIRT1, was phosphorylated and inactivated by AMPK at Thr344, promoting p53 acetylation and apoptosis of HCC cells. Taken together, our findings suggest that underexpression of AMPK is frequently observed in HCC, and that inactivation of AMPK promotes hepatocarcinogenesis by destabilizing p53 in a SIRT1-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation.

The deacetylase SIRT1 regulates multiple biological processes including cellular metabolism and aging. Importantly, SIRT1 can also inactivate the p53 tumor suppressor via deacetylation, suggesting a role in oncogenesis. Recently, SIRT1 was shown to be released from its endogenous inhibitor DBC1 by a process requiring AMPK and the phosphorylation of SIRT1 by yet undefined kinase(s). Here we prov...

متن کامل

Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway.

The induction of senescence for cancer treatment has provoked considerable interest recently. Metformin, a first-line drug for diabetes mellitus type 2, appears to be associated with a lower risk and improved outcomes in hepatocellular carcinoma (HCC). The mechanism involved in function of metformin in HCC is poorly understood. We show that low doses of metformin induced hepatoma cell senescenc...

متن کامل

Metformin, metabolic stress, and mitochondria. Focus on "A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells".

THE P53 PROTEIN, BEST KNOWN as a tumor suppressor, participates in responses to cellular stresses, including DNA damage and hypoxia, but also determines metabolic substrate disposition. In cancer, p53 represses glycolysis while promoting mitochondrial oxidative phosphorylation via effects on gene transcription (3). Peroxisome proliferator-activated receptorcoactivator-1 (PGC-1), a member of a f...

متن کامل

Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage Responses

Hypermethylated in cancer 1 (HIC1) is an epigenetically regulated transcriptional repressor that functionally cooperates with p53 to suppress age-dependent development of cancer in mice. Here we show that the mechanism by which the loss of HIC1 function promotes tumorigenesis is via activating the stress-controlling protein SIRT1 and thereby attenuating p53 function. HIC1 forms a transcriptiona...

متن کامل

Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1.

The activity of Rb (retinoblastoma protein) is regulated by phosphorylation and acetylation events. Active Rb is hypophosphorylated and acetylated on multiple residues. Inactivation of Rb involves concerted hyper-phosphorylation by cyclin-CDK (cyclin-dependent kinase) complexes combined with deacetylation of appropriate lysine residues within Rb. In the present study, using in vivo co-immunopre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 72 17  شماره 

صفحات  -

تاریخ انتشار 2012